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Attenuating oscillations in uncertain dynamic systems
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Abstract. Two basic approaches exist for the design of robust H∞-controllers used to optimally attenuate oscil-
lations in uncertain dynamic systems. One of these is based on solving Riccati equations; the other approach
involves a linear matrix-inequality (LMI) technique. It is shown that the Riccati equations associated with this
problem, which contain additional parameters (scalings) as Lagrangian multipliers, are feasible only when the val-
ues of these parameters are within a parallelepiped whose boundaries are to be determined. A new algorithm
for synthesizing a robust H∞-controller, using the LMI technique, is suggested. The boundaries of the admissible
values of the scalings are identified. An illustrative example is considered, which concerns the optimal attenuation
of oscillations of a parametrically disturbed pendulum.
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1. Introduction

Within the framework of the state-space technique, there are two main approaches to
H∞-controller design. One of these is based on solving an algebraic Riccati equation [1], while
the other involves linear matrix inequalities (LMIs) [2, 3]. When the mathematical model of a
plant that is to be controlled is completely known, then each of these approaches allows one to
construct H∞-controllers by using effective computational procedures that are available through
MATLAB [4]. When the description of a plant involves uncertainties, the development of robust
H∞-controllers that provide a desired attenuation of disturbances, is reduced to the design of
an H∞-controller for some auxiliary system. The fully known system is derived from the ini-
tial uncertain system by a process of replacing the uncertainties by some additional artificial
disturbances and some additional parameters. For systems with norm-bounded time-varying
uncertainty parameters or for systems involving an unknown nonlinear static function (Lurie
systems), these additional parameters act as Lagrange multipliers or, perhaps, as coefficients
in an S-procedure [5, 6]. For systems described by transfer-function matrices with uncertain
dynamic blocks, these parameters are the so-called scalings [7–10]. In either case, the con-
struction of H∞-controllers for the auxiliary problem is a very difficult task, mainly because
the values of the additional parameters, for which appropriate Riccati equations or LMIs are
feasible, are unknown a priori.

It was shown in [11–13] that the design of a robust H∞- controller can be reduced to an opti-
mization problem for some function that is subjected to LMI constraints. This function contains
the additional parameters as variables. This optimization problem turns out to be convex in the
case when the system state is available for measurement (state feedback case) [14, 15], but in the
case when only an output of the system is available for measurement (output feedback case) this



300 D.V. Balandin and M.M. Kogan

problem is non-convex in principle. Effective optimization algorithms would be helpful for tack-
ling this problem. A few such algorithms were suggested in [12, 13]. The algorithm discussed
in [16] uses the MATLAB command mincx to determine iteratively the minimum of a linear
function that is subjected to LMI constraints. Almost all these algorithms involve essentially a
search for two reciprocal matrices X and Y (XY = I ) that satisfy LMI constraints. The search
for these matrices is based on minimizing some discrepancy of the kind �= trace (X−Y−1).
Formally, the conditions XY = I and �=0 are equivalent. However, during the numerical pro-
cess, � can also vanish when XY �= I provided that X and Y−1 tend to zero. This is why it is
very important to restrict the domain of admissible values of the variables.

Recently [17–23], it has been proved that the domain of admissible values of Lagrange
multipliers, for which the H∞-control problem for the auxiliary system is feasible, is bounded
by a parallepiped whose boundaries have to be determined through a calculation process. This
result is based on an analysis of Riccati equations. The limiting control possibilities allow one
to derive an estimate for the robust performance of the original uncertain system [24]. Appli-
cation of these theoretical results to the control of a parametrically disturbed pendulum shows
that the corresponding parallepiped is fairly small. Hence, it is extremely difficult to determine
admissible Lagrange parameters without having any knowledge of this parallelepiped.

In this paper, we combine the approaches described above concerning the design of a
robust H∞-controller and use an LMI-based optimization algorithm taking into account that
scalings belong to the identified parallelepiped. The effectiveness of our algorithm is demon-
strated by applying it to the problem of a parametrically disturbed pendulum.

2. Preliminary results

Consider a controlled plant

ẋ=Ax+B1v+B2u, z=C1x+D12u, y=C2x+D21v, (1)

where x is a state, v is a disturbance input, u is a control input, z is a controlled output, y
is a measured output and A,B1,B2,C1,C2,D12,D21 are given matrices of appropriate orders.
The synthesis of an H∞-controller for this plant comes down to deriving a dynamic output
controller that provides attenuation of the disturbance in the given ratio γ , i.e., providing ful-
fillment of the inequality

sup
v �≡0

‖z‖
‖v‖ <γ,

and internal stability of the closed-loop system, where

‖η‖2 =
∫ ∞

0
|η(t)|2 dt,

for any vector function η(t)∈L2.
It is well known [1] that under the following assumptions:

(i) (A,B1) is stabilizable, (C1,A) is detectable;
(ii) (A,B2) is stabilizable, (C2,A) is detectable;
(iii) DT12(C1D12)= (0 I );
(iv)

(
B1

D21

)
DT21 =

(
0
I

)
,

one of the possibilities, namely the so-called central H∞-controller, is described by the equations
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˙̂x=Arx̂+L∞(y−C2x̂), x̂(0)=0, u=−�x̂, �=BT2 X∞, (2)

where Ar =A+γ−2B1B
T
1 X∞ −B2B

T
2 X∞,L∞ =Y∞(I −γ−2X∞Y∞)−1CT2 , and X∞ and Y∞ are

semi-positive stabilizing solutions of the Riccati equations

ATX+XA+X(γ−2B1B
T
1 −B2B

T
2 )X+CT1 C1 =0 (3)

and

AY +YAT +Y (γ−2CT1 C1 −CT2 C2)Y +B1B
T
1 =0, (4)

provided that

ρ(X∞Y∞)<γ 2, (5)

where ρ(·) denotes the spectral radius. The references [2,3] deal with an alternative charac-
terization for H∞-controllers in terms of LMIs. In particular, these controllers are defined by
the equations (2), where X∞ = γR−1 and Y∞ = γ S−1, and R=RT > 0, S=ST > 0 satisfy the
following LMIs



RAT +AR−γB2B

T
2 B1 RCT1

BT1 −γ I 0

C1R 0 −γ I


<0,



SA+AT S−γCT2 C2 CT1 SB1

C1 −γ I 0

BT1 S 0 −γ I


<0, (6,7)

(
R I

I S

)
≥0. (8)

A necessary and sufficient condition for the existence of H∞-controllers for given γ is the
feasibility of these LMIs with respect to the variables R > 0, S > 0. It is easy to check this
feasibility by means of the command feasp in MATLAB (toolbox LMI).

The synthesis of the optimal H∞-controller, providing the minimal level of disturbance
attenuation in the class � of linear dynamic output controllers, requires finding the minimal
H∞-norm of the closed-loop system (1), i.e.,

γ0 = inf
u∈�

sup
v �≡0

‖z‖
‖v‖ . (9)

The search for this value can be reduced to a convex optimization problem, namely, to
minimize γ under the convex constraints (6,7)–(8). This problem can be effectively tackled by
using the command mincx in MATLAB.

3. Statement of the problem

We will consider uncertain systems described by Equations (1) with the matrix A of the form

A=A0 +
n∑
k=1

Fk�k(t, x)Ek, (10)

where A0 is a given matrix, Fk are given matrices (the number of rows of each such matrix coin-
cides with the dimension of the state vector, the number of columns being equal to i1, i2, . . . , in,
respectively), Ek are given matrices (the number of columns of each such matrix coincides with
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the dimension of the state vector and the number of rows is equal to j1, j2, . . . , jn, respectively),
and �k(t, x) are unknown matrix functions satisfying the inequalities

�k(t, x)
T �k(t, x)≤ I , ∀t ≥0, ∀x, k=1, . . . , n. (11)

Such a structure of the matrix A allows us to describe uncertainty in different matrix entries
and blocks. Denote a class of such uncertainties through �. The problem is to synthesize a
linear dynamic output controller providing fulfillment of the inequality

‖z‖<γ ‖v‖, ∀v∈L2, v �≡0, ∀�k(t, x)∈�, (12)

with a minimally possible value of γ .

4. Auxiliary problem

The main idea of synthesizing a robust controller for the uncertain system under consider-
ation is to replace the initial uncertain system by some auxiliary system without uncertainty,
including additional disturbance inputs and additional parameters. This auxiliary system will
be of the form

ẋ=A0x+ (B1 γµ
−1
1 F1 . . . γµ

−1
n Fn)ξ +B2u,

ẑ=




C1

µ1E1
...

µnEn


x+




D12

0
...

0


u, y=C2x+ (D21 0 . . .0)ξ ,

(13)

where ξ = col (ξ0, ξ1, . . . , ξn) is a disturbance input, ẑ is a controlled output; all matrices in
these equations are the same as those in Equations (1), (10), γ > 0 and µk > 0, k= 1, . . . , n
are some numbers.

In the particular case when ξ0 =v and ξk =γ−1µk �k(t, x)Ekx, k=1, . . . , n, Equation (13)
coincides with Equation (1) with matrix A given in (10).

The control law that provides for the system (13) with some values of µk > 0, k= 1 . . . , n
fulfillment of the inequality

‖ẑ‖<γ ‖ξ‖, ∀ξ ∈L2, ξ �≡0, (14)

also provides fulfillment of inequality (12) for the initial uncertain system (1), (10) with the
same value of γ . Indeed, from (14) we obtain

‖z‖2 +
n∑
k=1

µ2
k‖Ekx‖2<γ 2‖v‖2 +

n∑
k=1

µ2
k‖�k(t, x)Ekx‖2 .

Hence, taking into account (11), we have the inequality (12) is satisfied. Therefore, in what
follows we will consider the H∞-control problem for system (13).

5. Synthesis of robust H∞-controllers based on Riccati equations

We will assume that the H∞-control output problem for the auxiliary system (13) is feasible for
a given γ and some values of µk. Since the assumptions (i)–(iv) are satisfied for this system,
one possible robust H∞-controller (the so-called central robust H∞-controller) is described by
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Equations (2) in which the appropriate matrices of the auxiliary system (13) enter. In this case,
the Riccati equations (3) and (4) will be of the form

AT0 X+XA0 +X(γ−2B1B
T
1 +

n∑
k=1

µ−2
k FkF

T
k −B2B

T
2 )X+CT1 C1 +

n∑
k=1

µ2
kE

T
k Ek =0 (15)

and

A0Y +YAT0 +Y (γ−2CT1 C1 +γ−2
n∑
k=1

µ2
kE

T
k Ek −CT2 C2)Y +B1B

T
1 +γ 2

n∑
k=1

µ−2
k FkF

T
k =0.

(16)

As an upper estimate of the minimal possible value of γ in inequality (12) one may then
use the minimal attenuation level in the auxiliary system. However, calculation of this value
by means of the standard procedures hinfric or hinflmi of MATLAB, which allow to
automatically find the minimum level γ0 for a system without uncertainty, is impossible here
because the matrices of the auxiliary system involve γ and the additional parameters µk.

In this situation, a search for such parameters µk that correspond to a minimal value of
γ should be carried out. This search should be done in the domain where the H∞-control
problem for the auxiliary system is feasible. For given γ , the values of the parameters µ=
(µ1, . . . ,µn) for which the Riccati equations (15) and (16) for the auxiliary system (13) have
stabilizing solutions satisfying (5) are referred to as admissible ones. Denote the domain of
all admissible values of µ by 
0(γ ). The main difficulty of the above search is the a priori
unboundedness of this domain. We will establish that, for a given γ , the domain 
0(γ ) is
bounded and included within the boundaries of a parallelepiped which will be identified.

To this end, we write the Riccati equations (15) and (16) in standard form, using the
additional parameters σk, k=1, . . . , n, defined by

σk =γµ−1
k , k=1, . . . , n . (17)

Then the Equations (15) and (16) will be of the form

AT0 X+XA0 +X[γ−2B̂1(σ )B̂
T
1 (σ )−B2B

T
2 ]X+ ĈT1 (µ)Ĉ1(µ)=0 (18)

and

A0Y +YAT0 +Y [γ−2ĈT1 (µ)Ĉ1(µ)−CT2 C2]Y + B̂1(σ )B̂
T
1 (σ )=0 , (19)

where B̂1(σ )= (B1 σ1F1, · · · , σnFn) and Ĉ1(µ)= col (C1, µ1E1, · · · ,µnEn). Note that the
above procedures of automatic search for the minimal γ can not also be applied to this problem
due to the Equations (17).

The following statement based on results given in [18] is a necessary condition for the
existence of a solution to the Riccati equation.

Lemma 1. Let the Riccati equation

�T P +P�+P(γ−2N1N
T
1 −N2N

T
2 )P +MTM=0 , (20)

where � is a Hurwitz matrix, have a semi-positive stabilizing solution P ≥0, i.e., such that �+
(γ−2N1N

T
1 −N2N

T
2 )P is Hurwitz. Then the following inequality

γ > sup
ω

√
ρ(G(ω)) , (21)

holds, where
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G(ω)=HT
1 (−iω)[I +H2(iω)H

T
2 (−iω)]−1H1(iω), (22)

H1(s)=M(sI −�)−1N1 , H2(s)=M(sI −�)−1N2 .

Remark 1. From Lemma 1 it follows, if a stabilizing solition to the Riccati equation (20)
exists, then

γ >
‖H1‖∞√

1+‖H2‖2∞
, (23)

where

‖H‖∞ = sup
ω

√
ρ(HT (−iω)H(iω)) .

Actually, since

I +H2(iω)H
T
2 (−iω)≤ I [1+ sup

ω
ρ(HT

2 (−iω)H2(iω))]= I (1+‖H2‖2
∞) ,

we obtain from (22)

G(ω)≥ (1+‖H2‖2
∞)

−1HT
1 (−iω)H1(iω)

and, hence,

sup
ω

√
ρ(G(ω))≥ ‖H1‖∞√

1+‖H2‖2∞
. (24)

Thus, we have (23).
From Lemma 1 it follows that a necessary condition for the existence of the required

solutions to (18) and (19) will be determined by means of the functions


1(µ,σ )= sup
ω

√
ρ(G1(ω,µ,σ )) , 
2(µ,σ )= sup

ω

√
ρ(G2(ω,µ,σ )) , (25)

where µ= (µ1, . . . ,µn), σ = (σ1, . . . , σn),

G1(ω,µ,σ ))=HT
1 (−iω,µ,σ)[I +H2(iω,µ)HT

2 (−iω,µ)]−1H1(iω,µ,σ) ,

G2(ω,µ,σ ))= Ĥ T
1 (−iω,µ,σ)[I + Ĥ2(iω,σ)Ĥ T

2 (−iω,σ)]−1Ĥ1(iω,µ,σ) ,
(26)

H1(s,µ, σ )= Ĉ1(µ)(sI −A0)
−1B̂1(σ ), H2(s,µ)= Ĉ1(µ)(sI −A0)

−1B2 ,
(27)

Ĥ1(s,µ, σ )= B̂T1 (σ )(sI −AT0 )−1ĈT1 (µ) , Ĥ2(s, σ )= B̂T1 (σ )(sI −AT0 )−1CT2 (28)

according to the next statement.

Theorem 1. Let for the system (13), with a Hurwitz matrix A0, the assumptions DT12(C1D12)=
(0 I ),D21(B

T
1 D

T
21)= (0 I ) hold. Then the domain 
0(γ ) of admissible values of the parameters

µ belongs to the domain 
1(γ ) defined by


1(γ )={µ : max{
1(µ1, . . . ,µn, γµ
−1
1 , . . . , γµ−1

n ),


2(µ1, . . . ,µn, γµ
−1
1 , . . . , γµ−1

n )}<γ }. (29)

In the general case, the domain 
1(γ ) does not coincide with the domain 
0(γ ), since
Lemma 1 provides a necessary condition only and, moreover, the condition (5) is not taken
into account. From a computational point of view, the description of the domain 
1(γ ) is
rather complicated, since for finding the functions 
j(µ,σ), j = 1,2, an optimization proce-
dure of the spectral radius of matrix functions over ω is needed.
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It turns out that the domain 
1(γ ) is included in an open parallelepiped the boundaries
of which are easily calculated.

Theorem 2. Let for the system (13) in which A0 is Hurwitz and DT12(C1D12) = (0 I ),
D21(B

T
1 D

T
21)= (0 I ), the problem of output H∞-control for a given γ and some µ= (µ1, . . . ,µn)

be feasible. Then the values of µ belong to the open parallelepiped

�(γ )={µk ∈ (µ−
k , µ

+
k γ ), k=1, . . . , n} , (30)

µ−
k = ‖Qk‖∞√

1+‖H12‖2∞
, µ+

k =
√

1+‖H21‖2∞
‖Rk‖∞

, (31)

and

γ >γ∗ =max{γ1, . . . , γk, . . . , γn, γ12, γ21} , (32)

γk = ‖Qk‖∞‖Rk‖∞√
(1+‖H12‖2∞)(1+‖H21‖2∞)

, γ12 = ‖H11‖∞√
1+‖H12‖2∞

, γ21 = ‖H11‖∞√
1+‖H21‖2∞

,

H11(s)=C1(sI −A0)
−1B1 , H12(s)=C1(sI −A0)

−1B2 , H21(s)=C2(sI −A0)
−1B1 ,

Qk(s)=C1(sI −A0)
−1Fk , Rk(s)=Ek(sI −A0)

−1B1 .

Note that the lower bounds µ−
k of the parallelepiped �(γ ) do not depend on γ , while

its upper bounds, which are equal to µ+
k γ , grow linearly with γ . Moreover, �(γ ) will be

bounded and, hence, the domain of admissible values of µ will be bounded as well, provided
that ‖Rk‖∞ �=0 for all k=1, . . . , n.

From Theorem 2 it follows that, for a given γ , the domain of admissible values of µ is
included in the bounded parallelepiped �(γ ). Outside of this parallelepiped the H∞-control
problem for the auxiliary system is not feasible. Thus, to estimate the minimally possible γ ,
one should create a finite grid in �(γ ), check the feasibility of the H∞-control problem at all
of its points by means of a standard MATLAB command and find the minimum value of γ
for which this problem is feasible.

Remark 2. In view of the estimate given in (24), the admissible values of µ satisfy the
condition

max




‖H1‖∞√
1+‖H2‖2∞

,
‖Ĥ1‖∞√

1+‖Ĥ2‖2∞


<γ , (33)

where H1 and H2 are derived from H1(s,µ,α) and H2(s,µ,α) given in (27), and Ĥ1 and Ĥ2

are obtained from Ĥ1(s,µ,α) and Ĥ2(s,µ,α) given in (28) for αk=γµ−1
k , k=1, . . . , n. Thus,

failure to execute the inequality (33) in some point of the grid means that this point does not
belong to 
0(γ ) and, consequently, it is not required to check feasibility of the H∞-control
problem in this point.

The computational procedure for finding the upper estimate of the minimal possible value
of γ involves the following steps:
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1. using the MATLAB procedure normhinf, calculate the values of γ∗,µ−
k ,µ

+
k , k=1, . . . , n;

2. for a given γ >γ∗, find a finite set of values of µ in the parallelepiped �(γ ) for which
the existence of stabilizing solutions (satisfying condition (5) of the Riccatti equations (15)
and (16) is numerically checked with the help of MATLAB;

3. if at least one such point exists, then the given γ is an upper estimate for the minimum
possible value of γ ; to adjust it, one must decrease the value of γ and go to step 2;

4. if there is no such a point, one must increase γ and go to step 2.
After a finite number of steps of this procedure, two values γl and γu will be found such

that, for γl , the problem of output H∞-control for the auxiliary system is infeasible for any
positive values of µk, while, for γu, there exist values µk for which the problem is feasible. The
existence of such a γu is ensured by the assumption that the problem of output H∞-control
for the auxiliary system is feasible. Using the bisection algorithm for the interval [γl, γu], we
obtain two sequences of the values γ (i)l and γ (i)u representing at the ith iteration the lower and
upper bounds for the upper estimate of the minimal possible value of γ for the initial uncertain
system (1), (10). We stop this process when the condition γ (i)u −γ (i)l <ε holds for a given ε. At
this iteration, let γu= γ̄ and µ̄k be the corresponding values of the parameters µk for which
the problem of output H∞-control for the auxiliary system is feasible. Then, according to (2),
the required robust controller, which attenuates the disturbance in the initial uncertain system
in the ratio of no more than γ̄ , is described by the following equations

˙̂x=Arx̂+ L̄(y−C2x̂) , Ar =A0 + γ̄−2B̂1(ᾱ)B̂
T
1 (ᾱ)X̄−B2B

T
2 X̄ ,

u=−�x̂ , �=BT2 X̄ , x̂(0)=0 ,
(34)

where L̄ = Ȳ (I − γ̄−2X̄Ȳ )−1CT2 , X̄ and Ȳ are semi-positive stabilizing solutions to the
Riccati equations (18) and (19), with µ = (µ̄1, . . . , µ̄n), α = ᾱ = (ᾱ1, . . . , ᾱn), ᾱk = γ̄ µ̄−1

k ,

k=1, . . . , n.

6. Synthesis of robust H∞-controllers based on linear matrix inequalities

Consider an alternative approach to the synthesis of robust H∞-controllers based on solving
LMIs. Represent the Equations (13) of the auxiliary system in the form

ẋ=A0x+ (B1 γα
1/2
1 F1 . . . γ α

1/2
n Fn)ξ +B2u

ẑ=




C1

α
−1/2
1 E1
...

α
−1/2
n En


x+




D12

0
...

0


u

y=C2x+ (D21 0 . . .0)ξ .

(35)

Introduce

F = (F1 F2 . . . Fn) , ET = (ET1 ET2 . . .ETn )

and the following diagonal matrices

V1 =diag (α1Ii1 , α2Ii2 , . . . , αnIin) , V2 =diag (α1Ij1 , α2Ij2 , . . . , αnIjn) ,

where Ik is the unit k×k-matrix. Then an H∞-controller for the auxiliary system exists if the
following LMIs corresponding to (6,7)–(8) are feasible
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1(R,α1, . . . , αn)=




RAT0 +A0R−γB2B
T
2 B1 FV1 RC

T
1 RET

BT1 −γ I 0 0 0

V1F
T 0 −V1 0 0

C1R 0 0 −γ I 0

ER 0 0 0 −V2



<0 , (36)


2(S,α
−1
1 , . . . , α−1

n )=




SA0 +AT0 S−γCT2 C2 CT1 ET V −1
2 SB1 SF

C1 −γ I 0 0 0

V −1
2 E 0 −V −1

2 0 0

BT1 S 0 0 −γ I 0

FT S 0 0 0 −V −1
1



<0 , (37)


3(R,S)=
(
R I

I S

)
≥0 . (38)

Now these are LMIs with respect to the variables R and S for fixed values of γ,α1, α2, . . . , αn.
To check the feasibility of these LMIs, one should carry out an enumeration of the possibil-
ities in some domain of the space of the variables γ,α1, α2, . . . , αn. However, this is a rather
complicated procedure.

Note here that the synthesis of the robust state feedback H∞-controller is reduced to solv-
ing the following LMIs

R>0 , α1>0 , . . . , αn >0 , 
1(R,α1, . . . , αn)<0 .

Moreover, since γ enters linearly in (36), the problem of optimal (with minimal possible value of
γ ) robust state feedback H∞-control is reduced to the following convex optimization problem

min{γ : γ >0, R>0, α1>0 , . . . , αn >0 , 
1(R,α1, . . . , αn)<0} ,
which can be effectively tackled via the command mincx in MATLAB.

In the general case of the output feedback problem, robust H∞-control synthesis is not
reduced to a convex optimization problem. Nevertheless, we will try to solve this problem by
reducing the non-convex terms and then using a technique of convex optimization. To this
end, note that the variables α1, . . . , αn enter into the first inequality linearly, while the vari-
ables α−1

1 , . . . , α−1
n enter into the second inequality linearly. Introduce additional variables

W1 =diag (β1Ii1 , β2Ii2 , . . . , βnIin) , W2 =diag (β1Ij1 , β2Ij2 , . . . , βnIjn)

and replace V −1
1 and V −1

2 by W1 and W2, respectively, in the inequality (37). Then we write
a new LMI


2(S, β1, . . . , βn)=




SA0 +AT0 S−γCT2 C2 CT1 ETW2 SB1 SF

C1 −γ I 0 0 0

W2E 0 −W2 0 0

BT1 S 0 0 −γ I 0

FT S 0 0 0 −W1



<0 . (39)
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Now, we have to provide the equalities

αkβk =1 , k=1,2, . . . , n , (40)

which are equivalent to two groups of inequalities

αkβk ≥1 , αkβk ≤1 , k=1,2, . . . , n .

The first of these can be rewritten as LMIs

�k(αk, βk)=
(
αk 1
1 βk

)
≥0 , k=1,2, . . . , n , (41)

while the second can not be presented as LMIs in principle, since these inequalities define a
non-convex domain in the space of αk, βk.

Taking this fact into account, we introduce the function

�(α,β)=
n∑
k=1

(αk −β−1
k ) ,

where α= (α1, . . . , αn) and β=β1, . . . , βn.
According to Theorem 2 we have

(µ−
k )

2 ≤βk ≤ (µ+
k )

2γ 2 , k=1,2, . . . , n . (42)

Denote by 
 the set of variables R,S,αk, βk, k=1, . . . , n, satisfying (42) and the following LMIs

R>0, S >0, αk >0 ,


1(R,α)<0, 
2(S, β)<0, (43)


3(R,S)≥0, �k(αk, βk)≥0 , k=1, . . . , n.

Now, formulate the following optimization problem: find a minimum of the function
�(α,β) on the set 
. If this minimum is equal to zero then, taking into account the bounded-
ness of the variables βk, we obtain the desired equalities (40). Thus, we arrive at the following
statement.

Theorem 3. Suppose that for a given γ the equality

inf{�(α,β) : R,S,αk, βk (k=1, . . . , n)∈
}=0 (44)

holds. Then the robust H∞-control problem for the uncertain system (1), (10) is feasible for
this γ .

The main difficulty when solving this problem is that the function to be minimized is not con-
vex and, consequently, a search for its global minimum can not be conducted by convex opti-
mization procedures. For this problem we suggest an optimization algorithm that involves an
iterative procedure at each step of which a minimum of a linear function subject to LMI con-
straints is found.

Introduce the following auxiliary function

�̂(α,β, q)=
n∑
k=1

(αk +q2
k βk +2qk) ,

where q = (q1, . . . , qn). This is a linear function in the variables αk, βk, k= 1, . . . , n, and for
qk=−β−1

k , k=1, . . . , n, we have �̂(α,β, q)=�(α,β). Fix values of the variables q=q(0), i.e.,
qk = q(0)k , k= 1, . . . , n, and, instead of the optimization problem (44), consider the following
optimization problem for q=q(0):
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min{�̂(α,β, q) : R,S,αk, βk (k=1, . . . , n)∈
} . (45)

The minimum of this function is calculated numerically via the procedure mincx. Note
that the LMIs 
3(R,S) ≥ 0,�k(αk, βk) ≥ 0 , k = 1, . . . , n in (43) are presented as strict
ones due to certain features of the toolbox LMI. Let it be reached at the following values
α(0)= (α(0)1 , . . . , α

(0)
n ) and β(0)= (β(0)1 , . . . , β

(0)
n ). Replace the values of the variables q : q(1)k =

−1/β(0)k , k=1, . . . , n and solve the optimization problem (45) when q=q(1). Let its minimum
be reached at α(1) = (α

(1)
1 , . . . , α

(1)
n ), β(1) = (β

(1)
1 , . . . , β

(1)
n ). Then choose q

(2)
k = −1/β(1)k , k =

1, . . . , n and continue the above process. The process is assumed to be terminated when at
least one of the following two inequalities

η(α(j), β(j))<ε

or

|�η(j)|= |η(α(j+1), β(j+1))−η(α(j), β(j))|<ε
holds, where

η(α,β)=
n∑
k=1

(αkβk −1)

and ε>0 is a given accuracy.
The above algorithm possesses the following important property.

Theorem 4. For any initial values q(0),

lim
j→∞

�(α(j), β(j))=�∞ ≥0 ,

and the algorithm comes to stop in a finite number of steps.

From Theorem 4 it follows that the algorithm may result in one of two possible situations.
If η∞ =0, the auxiliary H∞-control problem and, consequently, the robust H∞-control prob-
lem for uncertain system (1), (10) due to Theorem 3 is feasible for the given γ . If η∞>0, one
cannot make a decision regarding the feasibility of the auxiliary problem defined above since
the convergence of this algorithm to the global minimum of the function �(α,β) is not guar-
anteed. In the latter situation, it is recommended, for example, to repeat the above process for
other initial values q(0), as is usually done in global optimization.

The search for the minimum value of γ is carried out, as usual, by means of the bisection
algorithm. The efficiency of the proposed algorithm will be demonstrated in the next section.

7. Optimal attenuation of oscillations for a parametrically disturbed pendulum

Consider a controlled pendulum under parametric and external disturbances described by the
equation

ϕ̈+ [1+f1�1(t, ϕ, ϕ̇)]ϕ̇+ω2
0[1+f2�2(t, ϕ, ϕ̇)]ϕ=u+v1,

ψ=ϕ+v2 , ϕ(0)= ϕ̇(0)=0,
(46)

where ω0, fi, i= 1,2(ω0 �= 0,0 ≤fi <1) are given parameters, u is the control input, v1 is the
external disturbance, v2 is the measurement disturbance. The functions �i(t, ϕ, ϕ̇) correspond
to parametric disturbances and satisfy the inequalities

|�i(t, ϕ, ϕ̇)|≤1 , ∀t, ϕ, ϕ̇ , i=1,2. (47)
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Denote a class of such functions by �. The disturbances vT = (v1, v2) are assumed to be sat-
isfied the inequality

J1(v)=
∞∫

0

[v2
1(t)+v2

2(t)] dt <∞ .

The performance index is chosen as

J2(u, v)=
∞∫

0

(ω2
0ϕ

2 + ϕ̇2 +u2)dt ,

where the integrand is related to the mechanical energy of the undisturbed pendulum plus con-
trol costs. It is required to synthesize a controller using the measured output ψ and providing
the optimal attenuation of the external and measurement disturbances, i.e., the inequality

J2(u, v)

J1(v)
<γ 2 ∀v∈L2, v �≡0 , ∀�i(t, ϕ, ϕ̇)∈�, i=1,2, (48)

is to be fulfilled with the minimum value of γ under any admissible parametric disturbances.
Let us rewrite the pendulum equation in the form (1), (10), in which x = col (ϕ, ϕ̇), v =

col (v1, v2), y=ψ ,

A0 =
(

0 1
−ω2

0 −1

)
, B1 =

(
0 0
1 0

)
, B2 =

(
0
1

)
, C1 =


ω0 0

0 1
0 0


 ,

D12 =

 0

0
1


 , F1 =

(
0
f1

)
, F2 =

(
0
f2

)
,

C2 = (1 0), D21 = (0 1), E1 = (0 −1), E2 = (−ω2
0 0).

The pendulum parameters are chosen as follows: ω0 =10 and f1 =f2 =0·1.
By using the synthesis based on Riccati equations, we obtain

γ1 =0·0812, γ2 =0·8126, γ12 =0·8165, γ21 =1·407.

According to (32) this means that γ∗ =1·407 and the parallelepiped (30) is given by

0·0817<µ1<1·0055γ, 0·0817<µ2<0·1005γ.

The algorithm results in µ̄1 = 0·3856, µ̄2 = 0·1395, γl = 15·3 and γu = γ̄ = 15·5. Thus, the
controller (34), where

Ar =
(

0 1
−100·61 −1·6419

)
, L̄=

(
9·316

34·117

)
, �T =

(
1·469
1·547

)
,

provides attenuating oscillations for the parametrically disturbed pendulum in a ratio of no
more than 15·5.

By using the synthesis based on LMIs, we obtained the following results. The initial
parameters of the algorithm were q(0)1 = q(0)2 = 1. Calculations in MATLAB were carried out
with accuracy 10−6 and ε= 10−5. For γ < 15·303, the corresponding auxiliary problem was
not feasible. For γ =15·303, there were only two iterations: on the first iteration

α
(0)
1 =6·0318, α

(0)
2 =60·5862, β

(0)
1 =0·1658, β

(0)
2 =0·0166

and η=0·0043; while on the second iteration
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α
(1)
1 =6·0627, α

(1)
2 =60·6532, β

(1)
1 =0·1649, β

(1)
2 =0·0165

and η= 1·07 × 10−6, which, in view of the given accuracy, means that the control problem is
feasible. The parameters of the robust H∞-controller (2) with performance 15·303 are as follows

Ar =
(

0 1
−100·4450 −1·5128

)
, L∞ =

(
0·1686
1·5480

)
107 , �T =

(
1·3215
1·5229

)
.

Note that the different approaches presented above result in different robust H∞-controllers
providing attenuating levels close each other. For comparison, note that the minimal H∞-per-
formance for a pendulum without parametric disturbances is equal to 1·41.

8. Conclusion

Two main approaches to robust H∞-controller design for systems with time-varying
norm-bounded uncertainties based on solving algebraic Riccati equations and on solving linear
matrix inequalities have been considered.

The problem of synthesizing an optimal robust controller for uncertain systems is solved
through embedding into an auxiliary completely known system with scalings. To solve the latter
problem, it is required to find admissible values of the scalings such that the corresponding Ricc-
ati equations and LMIs have appropriate solutions and to search for a minimum attenuating
level of disturbances in the whole domain of admissible values.

It has been shown that the domain of admissible values of the scalings is bounded
and inscribed in a parallelepiped whose boundaries can easily be determined using MAT-
LAB procedures. The presented example of a controlled parametrically disturbed pendulum
demonstrates that the domain of admissible values can be very small and, if there is no data
on it, the search for even a single admissible point in the space of scalings becomes very
complicated.

An optimization algorithm for checking the feasibility of the robust H∞-control problem
using an LMI technique and the boundaries of the admissible values for the scalings has been
suggested. This algorithm is implemented by means of the standard minimization procedure for
a linear function under LMI constraints (command mincx in the LMI toolbox). It has been
shown that the sequence of the function values generated by the algorithm is always converging.
If its limiting value is equal to zero, the original robust H∞-control problem is feasible. The main
difficulty in the implementation of this approach is to make a decision about the problem fea-
sibility when the limiting value turns out to be nonzero. In latter case, one can, for example,
repeat the above process for other initial values of the algorithm, as is usually done in global
optimization. A numerical example of optimal oscillation attenuation for a parametrically dis-
turbed pendulum illustrates the effectiveness of the proposed algorithm.
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